Longitudinal size exponent for two-dimensional directed animals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L893
(http://iopscience.iop.org/0305-4470/21/18/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:59

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Longitudinal size exponent for two-dimensional directed animals

Deepak Dhar
Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Received 8 June 1988

Abstract

Using phenomenological renormalisation with strip widths up to size 23 , we have numerically estimated the longitudinal size exponent $\nu_{\|}$for two-dimensional directed animals. We get $\nu_{1}=0.81733 \pm 0.00005$. This rules out the simple fraction $9 / 11$ suggested by earlier numerical data. The effective correction to scaling exponent in the continuoustime version of the problem is 1.5 ± 0.1.

The directed animals problem in two dimensions is one of the simplest models showing a non-trivial critical relaxation to equilibrium, and has generated much interest in recent years. Exact expressions for the number of distinct animals with n sites and their average width have been obtained by establishing an equivalence to a hard-square lattice gas with next-nearest-neighbour interactions at a disorder point [1,2], to a one-dimensional lattice gas with nearest-neighbour exclusion [3], to a subset of random walks in one dimension [4,5] and by finding the largest eigenvector of the transfer matrix [6,7]. None of these approaches have succeeded in determining exactly the longitudinal size exponent $\nu_{\|}$, defined by the relation $\left\langle R_{\|, n}\right\rangle \sim n^{\nu_{\|}}$, where $\left\langle R_{\|, n}\right\rangle$ is the average extent in the 'preferred' direction of a directed animal having n sites. By extrapolating the exact values of the average caliper extent for small n, Redner and Yang [8] obtained the estimate $\nu_{\|}=0.800 \pm 0.001$. Analysing a somewhat longer series for the radius of gyration, Privman and Barma [9] estimated $\nu_{\|}=0.8177 \pm 0.0012$. The latter result also agrees with the phenomenological renormalisation calculation of Nadal et al [6] who obtained $\nu_{\|}=0.8185 \pm 0.0010$, and noted that it is well approximated by the simple fraction $9 / 11$.

In this letter, we report the result of a phenomenological renormalisation calculation to estimate $\nu_{\|}$numerically. We study the equivalent problem of critical slowing down at the Lee-Yang edge singularity. At the critical point, the relaxation time on a ring on N sites varies as N^{2}, where z is the dynamical critical exponent $=\nu_{\|} / \nu_{\perp}$. We determined the relaxation rates by numerically diagonalising the stochastic matrices for $N=2-23$, and knowing the exact value $\nu_{\perp}=1 / 2$, we find

$$
\begin{equation*}
\nu_{\|}=0.81733 \pm 0.00005 \tag{1}
\end{equation*}
$$

This value lies roughly within the error bars quoted in [6,9], but our error bars are an order of magnitude smaller. The simple fraction $9 / 11$, which was suggested as a possible exact value by earlier data, seems to be clearly ruled out. We have also estimated the correction to scaling exponent Ω, and find that it is larger than 1 , with a value ≈ 1.5.

We study a continuous-time Markovian evolution of a one-dimensional lattice gas with nearest-neighbour exclusion on a ring of N sites. The dynamics is single-spin-flip Glauber type with transition rates defined as follows. An empty site with both neighbours empty has a probability $z \mathrm{~d} t$ of becoming occupied in a subsequent small time interval $\mathrm{d} t$. An occupied site has a probability $\mathrm{d} t$ of becoming empty in the same interval.

These transition rates clearly do not conserve the particle number, but satisfy the detailed balance condition. The steady state corresponds to the thermodynamic state of a lattice gas with nearest-neighbour exclusion at activity z. The exact transcription of the directed site animals on a square lattice to a Markovian evolution of a onedimensional gas gives a discrete-time dynamics, with odd and even sites updated alternately. Choosing a continuous-time dynamics results in a much sparser transition matrix, and removes the restriction that N be even. This is very important as the largest value of N reachable is limited by computer capacity, and with only even N allowed, our generated series would be only half as long, with resulting extrapolations much more uncertain. The change from discrete to continuous time is not expected to change the universality class of the problem.

Let $P(C, t)$ be the probability of the configuration C of occupied sites on the ring at time t. Then $P(C, t)$ satisfies a master equation of the form

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} P(C, t)=-\sum_{C^{\prime}} W\left(C, C^{\prime}\right) P\left(C^{\prime}, t\right) \tag{2}
\end{equation*}
$$

where $W\left(C, C^{\prime}\right)$ is the stochastic rate matrix. The lowest eigenvalue of W is zero, corresponding to the steady state. Let the second-lowest eigenvalue of W be $\lambda_{N}(z)$. All time-dependent connected correlation functions of the system decay as $\exp \left(-\lambda_{N}(z) t\right)$ for large times t. For real positive values of $z, \lambda_{N}(z)$ stays finite even as N tends to infinity, consistent with the absence of phase transitions in one dimension. However, the matrix elements of W are simple linear functions of z and the matrix can be analytically continued to negative values of z.

The steady-state properties of the system are easily determined from the partition function $\Omega_{N}(z)$. It is easy to show that

$$
\Omega_{N}(z)=\operatorname{Tr}\left(\begin{array}{ll}
1 & 1 \tag{3}\\
z & 0
\end{array}\right)^{N}
$$

The zeros of $\Omega_{N}(z)$ lie on the negative real z axis. In the limit of large N, the zeros extend over the real time $-\infty \leqslant z \leqslant-1 / 4$. The point $z_{\mathrm{c}}=-1 / 4$ is a critical point of the problem corresponding to the Lee-Yang edge singularity. From finite-size scaling theory it is expected that for large N

$$
\begin{equation*}
\lambda_{N}\left(z_{\mathrm{c}}\right)=A N^{-2 \nu_{\Perp}\left(1+B N^{-\Omega}+\text { higher-order terms }\right)} \tag{4}
\end{equation*}
$$

where A and B are some constants and Ω is the correction to scaling exponent.
For finite N, it is straightforward to determine $\lambda_{N}\left(z_{\mathrm{c}}\right)$ numerically. The number of allowed configurations of the gas is $\Omega_{N}(z=1)$, which increases as $(1.618 \ldots)^{N}$ for large N. Working in a sector invariant under translations and reflection, one is able to reduce the dimension of the matrix W by a factor $\leqslant 2 N$. The dimension is further decreased by 1 by knowing the exact left and right eigenvectors corresponding to the eigenvalue 0 . We used a simple relaxation algorithm. Numerically, the left eigenvector of W is better behaved, and easier to determine than the right eigenvector. We start
with an arbitrary initial (left) vector $\psi(C)$, and iterate it using the formula

$$
\begin{equation*}
\psi^{\prime}(C)=\left(\psi(C)-(\Delta t) \sum_{C^{\prime}} \psi\left(C^{\prime}\right) W\left(C^{\prime}, C\right)\right) \frac{1}{F} \tag{5}
\end{equation*}
$$

where Δt is a small time step, and F is a normalisation constant chosen so that $\left\|\psi^{\prime}(C)\right\|=1$. After a large number of iterations $\psi(C)$ converges to the left eigenvector, and $(1-F) / \Delta t$ converges to the smallest (non-zero) eigenvalue $\lambda_{N}(z)$.

To control the accumulated numerical errors, we stored 4 W as an integer array (as $z_{\mathrm{c}}=-\frac{1}{4}$), and elements of $\psi(C)$ in double precision (96 bits). The iteration was stopped only when successive λ_{N} values converged to 19 decimal places. The resulting values of $\lambda_{N}\left(z_{\mathrm{c}}\right)$ are listed in table 1 for $N=2-23$.

To analyse this series we have used a six-term sequential fit of the form

$$
\begin{equation*}
\log \lambda_{N}\left(z_{\mathrm{c}}\right)=A_{0} N+A_{1}+A_{2} / N^{-A_{4}}+A_{3} / N^{-A_{5}} . \tag{6}
\end{equation*}
$$

The six unknown parameters A_{0}, \ldots, A_{5} are determined using six successive values of $\lambda_{N}\left(z_{\mathrm{c}}\right)$. The results are displayed in table 2 . We see that the values of A_{0} show a good convergence. The exponent A_{5} tends to increase for large N along with the amplitude A_{3}, indicating that the form of the second correction term is perhaps not appropriate. However, the value of A_{0} is not very sensitive to the fitting values A_{3} and A_{5}.

In table 3, we show the values of five-term sequential fits if we fix $A_{4}=1.5$ in (6) exactly. The convergence is seen to be very good and we conclude

$$
\begin{equation*}
A_{0}=-1.63465 \pm 0.00010 \tag{7}
\end{equation*}
$$

Table 1. Values of the critical relaxation rate $\lambda_{N}\left(z=z_{\mathrm{c}}\right)$ for various values of N. The size of the matrix diagonalised is d_{N}.

N	d_{N}	λ_{N}
2	1	0.500000000000000
3	1	0.250000000000000
4	2	0.156929669182746
5	2	0.109611796797792
6	4	0.081732005752465
7	4	0.063737470802681
8	7	0.051363960620292
9	8	0.042446461629277
10	13	0.035781687538384
11	15	0.030653799048695
12	25	0.026613590856938
13	30	0.023366739668568
14	48	0.020713390145382
15	63	0.018513690439375
16	98	0.016667230147525
17	132	0.015100297537858
18	208	0.013757720261048
19	290	0.012597490278604
20	454	0.011587133430694
21	656	0.010701202545236
22	1021	0.009919511886819
23	1509	0.009225871493041

Table 2. Values of the constants A_{0} to A_{5} obtained by the sequential fit to (6) using the values λ_{N} to λ_{N+5}.

\boldsymbol{N}	\boldsymbol{A}_{0}	$\boldsymbol{A}_{\mathbf{1}}$	\boldsymbol{A}_{2}	\boldsymbol{A}_{3}	\boldsymbol{A}_{4}	\boldsymbol{A}_{5}
7	-1.63448179	0.441453	-0.315370	1.64377	1.56989	3.81441
8	-1.63452735	0.441640	-0.306575	1.77383	1.55488	3.89982
9	-1.63455658	0.441762	-0.300294	1.92984	1.54420	3.98115
10	-1.63457746	0.441852	-0.295320	2.12987	1.53579	4.06562
11	-1.63459343	0.441921	-0.291141	2.39946	1.52877	4.15798
12	-1.63460617	0.441978	-0.287517	2.77822	1.52271	4.26210
13	-1.63461651	0.442024	-0.284351	3.32709	1.51745	4.38061
14	-1.63462508	0.442063	-0.281551	4.16302	1.51281	4.51791
15	-1.63463221	0.442096	-0.279093	5.49351	1.50874	4.67710
16	-1.63463818	0.442123	-0.276932	7.76476	1.50516	4.86406
17	-1.63464322	0.442147	-0.275039	11.98734	1.50203	5.08570
18	-0.63464746	0.442167	-0.273391	20.78501	1.49930	5.35184

Table 3. Values of the constants A_{0} to A_{5} obtained by sequential fit of data to the form (6) using the values λ_{N} to λ_{N+4}, fixing $A_{4}=1.5$ exactly.

\boldsymbol{N}	\boldsymbol{A}_{0}	\boldsymbol{A}_{1}	\boldsymbol{A}_{3}	A_{2}	A_{5}
2	-1.63782960	0.45133384	1.191139	-0.350662	3.37573
3	-1.63607617	0.44650797	1.266586	-0.316508	3.55403
4	-1.63525391	0.44410458	1.439035	-0.296328	3.75250
5	-1.63494981	0.44317275	1.650911	-0.287299	3.90780
6	-1.63481878	0.44275501	1.895839	-0.282683	4.03596
7	-1.63475239	0.44253607	2.189518	-0.279957	4.15171
8	-1.63471436	0.44240694	2.558593	-0.278167	4.26385
9	-1.63469077	0.44232478	3.038374	-0.276913	4.37697
10	-1.63467543	0.44227015	3.674520	-0.276003	4.49301
11	-1.63466520	0.44223295	4.525697	-0.275333	4.61219
12	-1.63465829	0.44220739	5.664507	-0.274837	4.73350
13	-1.63465362	0.44218986	7.170603	-0.274473	4.85470
14	-1.63465051	0.44217799	9.110715	-0.274211	4.97246
15	-1.63464849	0.44217018	11.478987	-0.274028	5.08169
16	-1.63464726	0.44216534	14.104036	-0.273907	5.17569
17	-1.63464660	0.44216270	16.513024	-0.273838	5.24549
18	-1.63464635	0.44216173	17.880794	-0.273811	5.27980
19	-1.63464643	0.44216205	17.268860	-0.273820	5.26511

whence we conclude that

$$
\begin{equation*}
\nu_{\|}=0.81733 \pm 0.00005 . \tag{8}
\end{equation*}
$$

For the correction to scaling exponent we estimate

$$
\begin{equation*}
\Omega=1.5 \pm 0.1 \tag{9}
\end{equation*}
$$

The value of $\nu_{\|}$clearly rules out the simple fraction $9 / 11=0.818181 \ldots$. The next simple rational approximant is $85 / 104$. The possible appearance of a large denominator in this simple problem is somewhat unexpected. But we note even larger denominators have been conjectured by Baxter and Guttman [10] and Essam et al [11] in critical exponents of the related directed percolation problem.

Absence of a ($1 / N$) correction in (4) is also unexpected. The apparent faster than ($1 / N$) convergence of critical exponents in some phenomenological renormalisation calculations has been ascribed to mutual cancellation between the dominant and subdominant correction to scaling terms [12]. In principle, our fitting form (6) having two correction to scaling terms can take account of such cancellations. However, fixing $A_{4}=1$ leads to distinctly poorer convergence in the five-term sequential fits than in table 3. Similarly, allowing for a constant background term in λ_{N}^{-1} corresponds to fixing $A_{4}=1.6346$. This also leads to poorer convergence. Note that the correction to scaling exponent for the discrete-time dynamics (directed lattice animals) may well be different from the continuum-time dynamics studied here.

I thank M Barma for useful discussions.

References

[1] Dhar D 1982 Phys. Rev. Lett. 49959
[2] Verhagen A M W 1976 J. Stat. Phys. 15219
[3] Dhar D 1983 Phys. Rev. Lett. 51853
[4] Viennot G 1985 Seminar Bourbaki vol 1983/84, asterisque no 121-122 p 225
[5] Georges A, Hansel D, Le Doussal P and Maillard J M 1988 J. Phys. A: Math. Gen. 19 L329
[6] Nadal J P, Derrida B and Vannimenus J 1982 J. Physique 431561
[7] Hakim V and Nadal J P 1983 J. Phys. A: Math. Gen. 16 L213
[8] Redner S and Yang Z R 1982 J. Phys. A: Math. Gen. 15 L177
[9] Privman V and Barma M 1984 Z. Phys. B 5759
[10] Baxter R J and Guttmann A J 1988 J. Phys. A: Math. Gen. 213193
[11] Essam J W, Guttmann A J and De'Bell K 1988 J. Phys. A: Math. Gen. 213815
[12] Privman V 1984 Physica 123A 428

