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LETTER TO THE EDITOR 

Longitudinal size exponent for two-dimensional 
directed animals 

Deepak Dhar 
Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 
Bembay 400005, India 

Received 8 June 1988 

Abstract. Using phenomenological renormalisation with strip widths up to size 23, we have 
numerically estimated the longitudinal size exponent vI, for two-dimensional directed 
animals. We get vII = 0.817 33 *O.OOO 05. This rules out the simple fraction 9/ 11 suggested 
by earlier numerical data. The effective correction to scaling exponent in the continuous- 
time version of the problem is 1.5*0.1. 

The directed animals problem in two dimensions is one of the simplest models showing 
a non-trivial critical relaxation to equilibrium, and has generated much interest in 
recent years. Exact expressions for the number of distinct animals with n sites and 
their average width have been obtained by establishing an equivalence to a hard-square 
lattice gas with next-nearest-neighbour interactions at a disorder point [ 1,2], to a 
one-dimensional lattice gas with nearest-neighbour exclusion [3], to a subset of random 
walks in one dimension [4,5] and by finding the largest eigenvector of the transfer 
matrix [6,7]. None of these approaches have succeeded in determining exactly the 
longitudinal size exponent vII , defined by the relation (RII,,) - n "11, where ( Ri1,,) is the 
average extent in the 'preferred' direction of a directed animal having n sites. By 
extrapolating the exact values of the average caliper extent for small n, Redner and 
Yang [8] obtained the estimate vlI =0.800*0.001. Analysing a somewhat longer series 
for the radius of gyration, Privman and Barma [9] estimated vlI = 0.8177*0.0012. The 
latter result also agrees with the phenomenological renormalisation calculation of 
Nadal et a1 [6] who obtained vIl = 0.8185 * 0.0010, and noted that it is well approximated 
by the simple fraction 9/ 11. 

In this letter, we report the result of a phenomenological renormalisation calculation 
to estimate vll numerically. We study the equivalent problem of critical slowing down 
at the Lee-Yang edge singularity. At the critical point, the relaxation time on a ring 
on N sites varies as N', where z is the dynamical critical exponent = v I I / v L .  We 
determined the relaxation rates by numerically diagonalising the stochastic matrices 
for N = 2-23, and knowing the exact value vL = 1/2, we find 

(1) = 0.817 33 * 0.000 05. 

This value lies roughly within the error bars quoted in [6,9], but our error bars are 
an order of magnitude smaller. The simple fraction 9/11, which was suggested as a 
possible exact value by earlier data, seems to be clearly ruled out. We have also 
estimated the correction to scaling exponent a, and find that it is larger than 1, with 
a value ~ 1 . 5 .  
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We study a continuous-time Markovian evolution of a one-dimensional lattice gas 
with nearest-neighbour exclusion on a ring of N sites. The dynamics is single-spin-flip 
Glauber type with transition rates defined as follows. An empty site with both neigh- 
bours empty has a probability z dt  of becoming occupied in a subsequent small time 
interval dr. An occupied site has a probability d t  of becoming empty in the same 
interval. 

These transition rates clearly do not conserve the particle number, but satisfy the 
detailed balance condition. The steady state corresponds to the thermodynamic state 
of a lattice gas with nearest-neighbour exclusion at activity z. The exact transcription 
of the directed site animals on a square lattice to a Markovian evolution of a one- 
dimensional gas gives a discrete-time dynamics, with odd and even sites updated 
alternately. Choosing a continuous-time dynamics results in a much sparser transition 
matrix, and removes the restriction that N be even. This is very important as the 
largest value of N reachable is limited by computer capacity, and with only even N 
allowed, our generated series would be only half as long, with resulting extrapolations 
much more uncertain. The change from discrete to continuous time is not expected 
to change the universality class of the problem. 

Let P( C, t )  be the probability of the configuration C of occupied sites on the ring 
at time t .  Then P ( C ,  t )  satisfies a master equation of the form 

d 
- P( C, t )  = -1 W (  C, c ’ )P(  c’, t )  
d t  C’ 

where W ( C ,  C ’ )  is the stochastic rate matrix. The lowest eigenvalue of W is zero, 
corresponding to the steady state. Let the second-lowest eigenvalue of W be A N ( z ) .  
All time-dependent connected correlation functions of the system decay as 
eXp(-AN(Z)t) for large times t. For real positive values of z, A N ( z )  stays finite even 
as N tends to infinity, consistent with the absence of phase transitions in one dimension. 
However, the matrix elements of W are simple linear functions of z and the matrix 
can be analytically continued to negative values of z. 

The steady-state properties of the system are easily determined from the partition 
function nN(z) .  It is easy to show that 

The zeros of nN(z) lie on the negative real z axis. In the limit of large N, the 
zeros extend over the real time -as z S -1/4. The point z ,  = -1/4 is a critical point 
of the problem corresponding to the Lee-Yang edge singularity. From finite-size scaling 
theory it is expected that for large N 

(4) 

where A and B are some constants and Q is the correction to scaling exponent. 
For finite N, it is straightforward to determine A N ( z , )  numerically. The number 

of allowed configurations of the gas is ON ( z  = 11, which increases as (1.618. . . ) N  for 
large N. Working in a sector invariant under translations and reflection, one is able 
to reduce the dimension of the matrix W by a factor 6 2 N .  The dimension is further 
decreased by 1 by knowing the exact left and right eigenvectors corresponding to the 
eigenvalue 0. We used a simple relaxation algorithm. Numerically, the left eigenvector 
of W is better behaved, and easier to determine than the right eigenvector. We start 

A N ( z , )  = AN-2”II( 1 + BN-n + higher-order terms) 



Letter to the Editor L895 

with an arbitrary initial (left) vector $ ( C ) ,  and iterate it using the formula 

where Ar is a small time step, and F is a normalisation constant chosen so that 
II$’(C)ll= 1 .  After a large number of iterations $ ( C )  converges to the left eigenvector, 
and (1 - F ) / A r  converges to the smallest (non-zero) eigenvalue A N ( z ) .  

To control the accumulated numerical errors, we stored 4 W as an integer array (as 
z, = -:), and elements of +( C) in double precision (96 bits). The iteration was stopped 
only when successive AN values converged to 19 decimal places. The resulting values 
of A N ( z , )  are listed in table 1 for N =2-23. 

To analyse this series we have used a six-term sequential fit of the form 

log A N ( z c )  = AoN + A ,  + A 2 /  N-A4+ A,/ N-As. ( 6 )  

The six unknown parameters A,,, . . . , AS are determined using six successive values of 
A N ( Z , ) .  The results are displayed in table 2. We see that the values of A. show a good 
convergence. The exponent AS tends to increase for large N along with the amplitude 
A 3 ,  indicating that the form of the second correction term is perhaps not appropriate. 
However, the value of A.  is not very sensitive to the fitting values A, and A,. 

In table 3, we show the values of five-term sequential fits if we fix A4= 1.5 in ( 6 )  
exactly. The convergence is seen to be very good and we conclude 

A0 = -1.634 65 f 0.000 10 (7 )  

Table 1. Values of the critical relaxation rate A,(z = z,) for various values of N. The size 
of the matrix diagonalised is d,. 

N d ,  Ah.  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1 
1 
2 
2 
4 
4 
7 
8 

13 
15 
25 
30 
48 
63 
98 

132 
208 
290 
454 
656 

1021 
1509 

0.5OOOOOOOO OOO OOO 
0.250 OOO OOO 0o0 OOO 
0.156 929 669 182 746 
0.109 61 1 796 797 792 
0.081 732 005 752 465 
0.063 737 470 802 681 
0.051 363 960 620 292 
0.042 446 461 629 277 
0.035 781 687 538 384 
0.030 653 799 048 695 
0.026 613 590 856 938 
0.023 366 739 668 568 
0.020 713 390 145 382 
0.018513690439375 
0.016 667 230 147 525 
0.015 1 0  297 537 858 
0.013 757 720 261 048 
0.012 597 490 278 604 
0.01 1 587 133 430 694 
0.010 701 202 545 236 
0.009 919 511 886 819 
0.009 225 871 493 041 
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Table 2. Values of the constants A, to A, obtained by the sequential fit to (6) using the 
values AN to AN+, .  

N A0 Ai A2 A, A4 AS 

7 
8 
9 

10 
11 
12 
13 
14 
I5 
16 
17 
18 

-1.634481 79 
-1.634 527 35 
- 1.634 556 58 
-1.634 577 46 
- 1.634 593 43 
-1.634606 17 
- 1.634 616 5 1 
-1.634 625 08 
-1.63463221 
-1.634638 18 
- 1.634 643 22 
-0.634 647 46 

0.441 453 
0.441 640 
0.441 762 
0.441 852 
0.441 921 
0.441 978 
0.442 024 
0.442 063 
0.442 096 
0.442 123 
0.442 147 
0.442 167 

-0.315 370 1.643 77 
-0.306 575 1.773 83 
-0.300 294 1.929 84 
-0.295 320 2. I29 87 
-0.291 141 2.399 46 
-0.287 517 2.778 22 
-0.284 351 3.327 09 
-0.281 551 4.163 02 
-0.279 093 5.493 51 
-0.276 932 7.764 76 
-0.275 039 11.987 34 
-0.273 391 20.785 01 

1.569 89 
1.554 88 
1.544 20 
1.535 79 
1.528 77 
1.522 71 
1.517 45 
1.512 81 
1.508 74 
1.505 16 
1.502 03 
1.499 30 

3.814 41 
3.899 82 
3.981 15 
4.065 62 
4.157 98 
4.262 10 
4.380 61 
4.517 91 
4.677 10 
4.864 06 
5.085 70 
5.351 84 

Table 3. Values of the constants A, to A, obtained by sequential fit of data to the form 
(6) using the values AN to AN+4, fixing A,= 1.5 exactly. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

- 1.637 829 60 
- 1.636 076 17 
-1.635 253 91 
-1.634949 81 
-1.634 818 78 
-1.634 752 39 
-1.634 714 36 
- 1.634 690 77 
- 1.634 675 43 
- 1.634 665 20 
-1.634 658 29 
- 1.634 653 62 
- 1.634 650 5 1 
- 1.634 648 49 
-1.634 647 26 
- 1.634 646 60 
-1.63464635 
-1.634 646 43 

0.451 333 84 
0.446 507 97 
0.444 104 58 
0.443 172 75 
0.442 755 01 
0.442 536 07 
0.442 406 94 
0.442 324 78 
0.442 270 15 
0.442 232 95 
0.442 207 39 
0.442 189 86 
0.442 177 99 
0.442 170 18 
0.442 165 34 
0.442 162 70 
0.442 161 73 
0.442 162 05 

1.191 139 
1.266 586 
1.439 035 
1.650 91 1 
1.895 839 
2.189 518 
2.558 593 
3.038 374 
3.674 520 
4.525 697 
5.664 507 
7.170 603 
9.110715 

11.478 987 
14.104036 
16.513 024 
17.880 794 
17.268 860 

-0.350 662 
-0.316 508 
-0.296 328 
-0.287 299 
-0.282 683 
-0.279 957 
-0.278 167 
-0.276 913 
-0.276 003 
-0.275 333 
-0.274 837 
-0.274 473 
-0.274 21 1 
-0.274 028 
-0.273 907 
-0.273 838 
-0.273 81 1 
-0.273 820 

3.375 73 
3.554 03 
3.752 50 
3.907 80 
4.035 96 
4.151 71 
4.263 85 
4.376 97 
4.493 01 
4.612 19 
4.733 50 
4.854 70 
4.972 46 
5.081 69 
5.175 69 
5.245 49 
5.279 80 
5.265 11 

whence we conclude that 

V I I  = 0.817 33 * 0.000 05. (8) 
For the correction to scaling exponent we estimate 

a= 1.5*0.1. (9) 
The value of vII clearly rules out the simple fraction 9/11 = 0.818 181 . . .. The next 

simple rational approximant is 85/ 104. The possible appearance of a large denominator 
in this simple problem is somewhat unexpected. But we note even larger denominators 
have been conjectured by Baxter and Guttman [lo] and Essam et al [ll] in critical 
exponents of the related directed percolation problem. 
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Absence of a (1/ N )  correction in (4) is also unexpected. The apparent faster than 
(1/ N) convergence of critical exponents in some phenomenological renormalisation 
calculations has been ascribed to mutual cancellation between the dominant and 
subdominant correction to scaling terms [ 121. In principle, our fitting form (6) having 
two correction to scaling terms can take account of such cancellations. However, fixing 
A4= 1 leads to distinctly poorer convergence in the five-term sequential fits than in 
table 3. Similarly, allowing for a constant background term in A;’ corresponds to 
fixing A., = 1.6346. This also leads to poorer convergence. Note that the correction to 
scaling exponent for the discrete-time dynamics (directed lattice animals) may well be 
different from the continuum-time dynamics studied here. 

I thank M Barma for useful discussions. 
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